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The U.S. Naval Research Laboratory has implemented a novel neural-network adaptive
flight controller architecture for helicopter-based unmanned aerial vehicles (UAVs) origi-
nally presented by Eric Johnson and Suresh Kannan of the Georgia Institute of Technology.
Johnson and Kannan utilized on-line adaptation of a neural network to cancel model errors
present in an approximate dynamic inversion of the plant. Due to the advantages of risk
reduction during controller development and the increased operational flight envelope re-
sulting from the adaptation of the neural-network, this controller was utilized on a number
of different rotorcraft at the U.S. Naval Research Laboratory. This paper will describe
several interesting implementation details of the controller, as well as modifications made
to the basic controller architecture during implementation on different vehicles. Effects of
scale, rotor system design, and sample time will be discussed. Simulation and flight test
data will be presented showing the results of these modifications.

I. Nomenclature

δ Control output
x Vehicle state
q̄ Quaternion vector
P, V Position, Velocity
ω Angular rate
a, α Acceleration, Angular Acceleration (Pseudo-controls)
â, α̂ Approximate pseudo-control
I Moment of inertia
R Radius
e Equivalent flapping hinge offset
P-D Proportional-Derivative
NED North, East, Down
A Linear matrix
g Gravity vector represented in Earth frame
Ω Rotor speed (rad/s)
γ Blade Lock number
τ Time constant
TPP Tip-Path-Plane
a1 Longitudinal rotor TPP flap angle
Kfb Flybar TPP → main rotor cyclic mixing gain
Kcyc Main rotor cyclic → flybar cyclic mixing gain
M Mass
b Span

Subscripts
∗Senior Aerospace Engineer, kahn@ccs.nrl.navy.mil, and AIAA Member.
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rm Reference model
h Hedge
c Command
pd Proportional-Derivative compensator
ad Adaptive
lat, lon, ped Lateral, Longitudinal, Pedal
col Collective
ol, il Outer-loop, Inner-loop
b, fb Blade, Flybar
des Desired
trim Trim

Superscripts

B Body frame
E Earth frame (North, East, Down)

II. Introduction

Rotary wing vehicles possess many advantages over fixed-wing aircraft for military missions. These
advantages include hovering and forward flight, operation out of small spaces, and portability. A limiting
factor to the wide-spread use of helicopter unmanned vehicles has been the lack of a flight controller that can
reliably handle the wide flight envelope of a helicopter. Recently though, a neural-adaptive flight controller
has been developed for helicopter applications.1,2

Recent work at the U.S. Naval Research Laboratory has focused on the use of helicopters as practical
expendable autonomous vehicles. Two separate air vehicle platforms have been developed, both having
different flight dynamics. In order to minimize development time and risk, an adaptive flight controller
was chosen for both of these platforms. Due to the small-size of the aircraft, high fidelity flight data was
unavailable for system identification techniques to be used in the controller development.3 A physics-based
flight simulator was developed for controller synthesis and testing.3,4 Due to the possibility of large modeling
errors between the simulation model and real vehicle, the flight controller needed to be robust to model errors.
In order to satisfy the requirements of risk reduction and robustness, the controller presented by Johnson
and Kannan was selected.

This paper will present the implementation details of this particular controller architecture across two
vehicle platforms at the U.S. Naval Research Laboratory. The paper will begin with a basic overview of this
particular adaptive controller structure. Next, the details of the implementation of specific sections will be
addressed. These implementation details will be accompanied by examples taken from flight testing of both
research aircraft. Finally, conclusions will be drawn on the practicality of this particular controller when
applied across different vehicle platforms.

III. Overview of the Controller

The controller architecture presented by Johnson and Kannan is based on an approximate dynamic
inversion of a model of the plant. A neural-network is utilized online to cancel the errors that develop
between the approximate model of the plant and the true plant. Due to actuator dynamics, pseudo-control-
hedging (PCH) is utilized to eliminate the possibility of mis-adaptation.5

For this application, an inner-loop and outer-loop design was used. The inner-loop of the controller
regulates attitude of the vehicle via the moment generating controls, δlat,δlon,δped. The outer-loop utilizes the
rotor thrust generating control, δcol, and the attitude control of the inner-loop for the regulation of position
and velocity. An overview of the control architecture can be seen in Figure 1. A more detailed diagram of
the inner-loop and outer-loop blocks is illustrated in Figure 2. The reader is pointed to References [1,2,5] for
the full development of the controller mathematics. A brief description of the functional elements is given
next.
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Figure 1. Basic controller architecture.
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Figure 2. The inner-workings of the adaptive controller.

3 of 15

American Institute of Aeronautics and Astronautics



The controller begins with the outer-loop commands, Pc, Vc. These commands represent the desired
position and velocity of the vehicle. The position and velocity commands are prefiltered by the reference
model. The internal states of the reference model provide a smooth trajectory for the vehicle to follow.
A P-D compensator is utilized to cancel the error between the vehicle state, x, and the reference model
states. The total outer-loop pseudo-control, a, is then generated by summing the component pseudo-controls,
arm, apd, aad, from the reference model, P-D compensator, and neural network. The pseudo-control from
the neural network, aad, is designed to approximately cancel the residual errors between the approximated
dynamic model, used in the inversion block, and the real plant. The total pseudo-control is then utilized in
the approximate dynamic inversion block to generate the desired actuator commands. For the outer-loop,
these commands are collective angle, δcol, and attitude tilt angles, ∆Φ, ∆Θ. The outer-loop commands of
∆Φ and ∆Θ plus Ψc form the commands of the inner-loop. The inner-loop functionality is the same as the
outer-loop, with the resultant outputs being δlat,δlon,δped actuator commands.

IV. Implementation of the Adaptive Controller

This controller was implemented in software across two different target computer platforms. The first
platform was a PC-104-based avionics system. The second was Cloud Cap Technology’s Piccolo II.6 The
Piccolo II is built around the Motorola MPC555 processor. The controller was targeted for a propagation
rate of 20 Hz, which is slower than the 50 Hz that Johnson and Kannan used,1,2 due to the lower computer
processing power available. To feed the controller with vehicle data, a 16-state extended Kalman filter was
used to estimate the vehicle state. The filter estimated vehicle position, PE , and velocity, V E , in the Earth
North, East, Down reference frame. Estimated vehicle attitude was represented by quaternions, q̄, and
bias corrected body angular rate, ω. Three additional states, gravity, north-wind, and east-wind were also
estimated. The navigation filter was also propagated at 20 Hz.

A. Vehicles

The two vehicles that this controller was implemented on can be seen in Figures 3 and 4. The Maxi-

Figure 3. Maxi-Joker research vehicle.

Joker aircraft was built around the existing off-the-shelf Maxi-Joker airframe. An unusual aspect of the
Maxi-Joker helicopter is that it is electrically powered by a high-efficiency brushless motor, as opposed to
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Figure 4. SPIDER (Scientific Payload Insertion Device Electric Rotor) research vehicle.

conventional fuel-powered helicopters. Two Maxi-Joker vehicles were modified to support fully autonomous
flight operations. The first, with the PC-104-based avionics system, served as an initial test platform. The
second Maxi-Joker supported the Piccolo II avionics system. Both of the Maxi-Joker vehicles were built to
serve as surrogate test platforms for the GN&C software before flight on the SPIDER vehicle.

The SPIDER (Scientific Payload Insertion Device Electric Rotor) is a custom designed and built airframe.
Like the Maxi-Joker, the SPIDER vehicle is electrically powered. Only the Piccolo II avionics were targeted
for the SPIDER airframe. A primary difference between the SPIDER vehicle and the Maxi-Joker, is SPIDER
utilizes a variable-speed electric motor for tail-rotor drive, and thus δped, as opposed to the conventional
collective pitch adjustment of the tail blades used on the Maxi-Joker. This design feature allowed the
SPIDER vehicle to efficiently fold into a small package.

The SPIDER and Maxi-Joker vehicle both utilize a semi-rigid rotor system. The blade feathering axle
(spindle) is supported by elastomeric dampers (o-rings). A Bell-Hiller flybar is utilized to provide additional
stabilization for a manual pilot, via lagged-rate feedback.3 Table 1 lists some of the important parameters
of the SPIDER and Maxi-Joker aircraft.

B. Reference Frames

No mention of the reference frames in which different components were computed was provided in the original
description of this controller.1,2 This reference frame information is important for the correct calculations
of both the inner and outer-loop reference models and errors.

The outer-loop commands Pc and Vc are taken in Earth NED frame. This corresponds to the navigation
system estimates of position and velocity, PE and V E . It was also chosen to propagate the outer-loop
reference model states, Prm and Vrm, in Earth frame as well. Thus, the error equations for the outer-loop
are taken as:

eE
rm = Pc − PE

rm (1)
ėE
rm = Vc − V E

rm (2)
eE = PE

rm − PE (3)
ėE = V E

rm − V E (4)

The errors calculated from Equations 1-4 are in Earth frame. The pseudo-control, or acceleration, of the
outer-loop needs to be in body frame. One might rotate these errors via the full Earth to Body rotation

5 of 15

American Institute of Aeronautics and Astronautics



Component Maxi-Joker SPIDER Units
Main rotor radius 2.85 3.54 ft
Blade lift slope 6.00 5.75 /rad
Blade chord 0.198 0.242 ft
Hinge offset 0.202 0.258 ft
Blade mass 0.01897 0.03842 slug
Flybar radius 1.135 1.208 ft
Flybar paddle lift slope 3.0 3.0 /rad
Flybar paddle chord 0.156 0.197 ft
Flybar paddle span 0.417 0.346 ft
Flybar inertia 0.001219 0.0043 slug-ft2

Flybar TPP → cyclic 4.225 4.03 rad/rad
cyclic → flybar cyclic 0.716 0.603 rad/rad
Rotor speed 1000 920 RPM
Vehicle mass 0.3727 1.118 slug
Ixx 0.0845 0.9313 slug-ft2

Iyy 0.1901 2.937 slug-ft2

Izz 0.1065 0.9700 slug-ft2

Table 1. Parameters of Maxi-Joker and SPIDER vehicles.

matrix in Equation 5

CBE =




1− 2(q2
2 + q2

3) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) 1− 2(q2

1 + q2
3) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) 1− 2(q2
1 + q2

2)


 (5)

If this is done, an error in altitude will appear as a function of horizontal error and attitude tilt. This effect is
graphically shown in Figure 5. This induced error would result in the vehicle either climbing or descending.

Vehicle
Commanded Point

Horizontal Error


X
 Z


Introduced

Vertical Error


Figure 5. Altitude error introduced by full rotation matrix.

This effect can be seen in Figure 6 which is from a position step command of the Maxi-Joker while in flight
at t = 667sec. To prevent this from occurring, only a partial rotation matrix is utilized. This matrix is
shown in Equation 7.

Ψ = tan
(

2(q1q2 + q0q3)
1− 2(q2

2 + q2
3)

)−1

(6)
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Figure 6. Altitude jump caused by induced altitude error.

ZBE =




cos(Ψ) sin(Ψ) 0
− sin(Ψ) cos(Ψ) 0

0 0 1


 (7)

The errors are then finally rotated to body frame as:

eB
rm = ZBEeE

rm (8)
ėB
rm = ZBE ėE

rm (9)
eB = ZBEeE (10)
ėB = ZBE ėE (11)

With the errors now rotated correctly into the body frame, the rest of the outer-loop can be calculated as
shown in References [1, 2].

As stated earlier the reference model states are propagated in Earth frame, yet the reference model
acceleration is in body frame. The full rotation matrix is utilized to convert from body frame back to Earth
frame. The dynamic equations for the outer-loop reference model are shown in Equations 12-13.

V̇ E
rm = CBET

arm (12)
ṖE

rm = V E
rm (13)

Unlike the outer-loop, the inner-loop operates only in the body frame. The commands to the inner-loop
reference model are desired pitch and roll angles from the outer-loop, and the commanded heading. These
Euler-angles are converted to a quaternion, q̄des, for the final command. Because the inner-loop attitude
command is represented by q̄des, the total rotation caused by these three Euler-angles is the utilized. This
has the effect of rotating the attitude commands, ∆Φ and ∆Θ by the commanded yaw angle Ψc. This effect
is illustrated in Figure 7. As can be seen, the commanded pitch and roll attitude angles need to be rotated
such that this effect is avoided. Using the reference model quaternion, q̄rm, as the argument for Equation 6,
one can compute the current reference model heading, Ψrm. The error between the reference model and
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Figure 7. Effect of included heading command in attitude quaternion.

commanded headings is:
∆Ψrm = tohrev(Ψrm −Ψc) (14)

where tohrev(·) modulates a number between −π and π. The outer-loop attitude commands are then rotated
using Equation 15.

[
Φc

Θc

]
=

[
cos(∆Ψrm) − sin(∆Ψrm)
sin(∆Ψrm) cos(∆Ψrm)

][
∆Φ
∆Θ

]
(15)

The final inner-loop attitude quaternion command is then generated as:

q̄des = Q(Φc, Θc, Ψc) (16)

where Q(·) is the function to convert from Euler-angles to quaternion.7 This rotation of the attitude command
angles allows the vehicle to operate correctly during large displacement steps in heading, or during prolonged
durations of yaw actuator saturation. Such a situation occurred on the SPIDER vehicle, and is shown in
Figure 8. Because of the design of the SPIDER vehicle’s tail-rotor, it cannot produce 0 and negative thrust.
It relies on the main rotor torque, which is proportional to main rotor collective, to allow the vehicle to
rotate to the right. As main rotor collective is reduced, the resulting torque on the body is reduced. If the
collective is reduced beyond a point, this torque is reduced and the vehicle is unable to arrest the resulting
left pirouette until the collective is returned to a higher value.

C. Update Rate

The controller design was done using continuous-time analysis. When implemented on a digital computer
the rate at which the controller is propagated must be sufficiently faster than the dynamics which it is
controlling. For the case of the original literature, the controller was propagated at a rate of 50 Hz.1,2

Due to the limited computing resources on both of these aircraft, this implementation only propagated the
controller at 20 Hz. This reduction in update rate resulted in an interesting problem of the pseudo-control
hedging algorithm.
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Figure 8. SPIDER attitude during tail-rotor saturation.

As presented, the pseudo-control hedge5 works by first computing an estimate of the achievable total
pseudo-control, ν̂ by either an estimate or measurement of the current actuator value, δ. By taking the
difference between the desired total pseudo-control, ν, and estimated achievable total pseudo-control, ν̂, a
pseudo-control hedge, νh, is then generated. This hedge is then used to modify the reference model such
that the total desired pseudo-control becomes equal to the achievable pseudo-control. This process is done
to prevent the neural-network from mis-adapting to events such as actuator saturation. If the approximate
dynamic model is given by f(·), and the actuator model is g(·), then the pseudo-control hedge calculations
follow as:

δ = f−1(ν, x) (17)

δ̂ = g(δ, x) (18)

ν̂ = f(δ̂, x) (19)
νh = ν − ν̂ (20)

ẍrm = νrm − νh (21)

The pseudo-control hedging equations rely on the update rate of the control system being sufficiently
fast that it can be thought of as continuous. This is particularly true because the hedge can generate a
discontinuity in the acceleration of the reference model. The successful propagation of the reference model
in time when implemented on a digital computer is only guaranteed if the instantaneous reference model
acceleration stays below a value ¯̈xrm. If this bound is exceeded, the reference model integration will diverge.
This limit is present due to the discretization of the dynamics, and becomes more apparent as the time
step becomes larger, or the update rate slows. Under normal operation, this problem is not visible as the
reference model dynamics are smooth, and designed such that they can be propagated successfully at the
update rate of the controller. If, though, the difference between ν and ν̂ becomes large in one time step,
such as in the event of actuator saturation, the reference model acceleration can be pushed beyond ¯̈xrm.

To prevent this from occurring, the original pseudo-control hedge equations were augmented with the
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pseudo-control hedge acceleration limiter. This augmentation can be seen in Equation 22.

ẍrm =





¯̈xrm : νrm − νh > ¯̈xrm

νrm − νh : −¯̈xrm ≤ νrm − νh ≤ ¯̈xrm

−¯̈xrm : νrm − νh < −¯̈xrm

(22)

This problem was discovered as a result of the loss of one Maxi-Joker vehicle during a test flight. During
the flight, the δpedactuator saturated very rapidly, due to the high slew-rate of that particular actuator.
This, via the pseudo-control hedge, caused a large jump in the reference model acceleration. This resulted
in the propagation of the reference model diverging, and thus the failure of the controller. This failure of
the reference model can be seen in Figure 9.

Figure 9. Inner-loop reference model diverging due to PCH hedge.

It was also found that the parameters for the neural-network were dependent upon the update rate of the
controller. This was especially true for the bias weight bw and κ.1,2 The formulation of the neural-network
can be found in References [1, 2]. Importantly, it was discovered that if κ was too small, the propagation of
the network would diverge. This value can be thought of as a damping term. It was found empirically that
κ should be approximately equal to the time step of the controller. In this particular implementation, κ was
chosen to be 0.05. The bias value, bw, which scales the input to the adaptation law, was found to prevent
jitters in the adaptation. The larger bw was made, the less active the network became. If bw was made too
small, the adaption output became erratic. The network parameters that were implemented on both the
Maxi-Joker and SPIDER vehicles are listed in Table 2. As can be seen in Table 2 the robustifing signal as
described in References [1, 2] is not used. During simulation and flight test it was found not to be needed.

D. Approximate Dynamic Model

A key benefit stated of this particular adaptive controller is the ability to use a poor model of the plant as
the dynamic inverse. The approximate model used for the inner-loop is Equation 23, and the outer-loop
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Parameter Value
bv 0.5
bw 3.5
κ 0.05
ΓV 10.0
ΓW 1.0
Kr 0

Table 2. Neural-network parameters used on both Maxi-Joker and SPIDER vehicles.

model used is Equation 24.1

α = Aω + B







δlat

δlon

δped




︸ ︷︷ ︸
des

−




δlat

δlon

δped




︸ ︷︷ ︸
trim




(23)

a =




0
0

Zδcol


 (δcoldes

− δcoltrim) + CBEg (24)

The value Zδcol
is the estimated control power of the main rotor collective. The matrix A is the linearized

estimated rate damping values and the matrix B is the estimated inner-loop control power and allocation
matrix.

During the early implementation of the controller, the inner-loop model 23 was simplified by setting A
to 0. It was found during flight testing that this model was not sufficient. The reason for this can be seen
in a linear simulation of the system. In this simulation, only the inner-loop pitch dynamics were examined,
and the reference model states were assumed to be steady. This simulation also neglected the effect of the
neural-network, as only the stability of the basic dynamic inversion was evaluated. The P-D compensator
gains were calculated based on the equations presented in the literature1,2 and shown in Equations 25 and
26.

Kp = ω2
il + 4ζolωolζilωil + ω2

ol (25)
Kd = 2ζilωil + 2ζolωol (26)

This simulation will utilize the SPIDER parameters from Table 1 for the vehicle model. The linear model used
is based upon the rotor flapping and flybar teetering dynamics.3,4, 8 The model can be seen in Equations 27-
36.

Ω =
2RPMπ

60
(27)

Ib =
Mb

Rb

(Rb − e)3

3
(28)

γfb =
ρafbcfb[R4

fb − (Rfb − bfb)4]
Ifb

(29)

τfb =
16

Ωγfb
(30)

γb =
ρabcbR

4
b

Ib
(31)

τb =
16
Ωγb

(32)
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dM

da1
= 1.5Ib

e

Rb
Ω2 (33)

dL

db1
=

dM

da1
(34)

X =




a1fb

a1

q

Θ


 (35)

Ẋ =




−1
τfb

0 −1 0
Kfb

τb

−1
τb

−1 0

0
dM
da1
Iyy

0 0

0 0 1 0




X +




Kcyc

τfb

1
τb

0
0


 δlon (36)

Figure 10 illustrates the time-response of pitch attitude to a step pitch attitude command using three different
dynamic models. Figure 11 shows the block diagram for this simulation. An inner-loop natural frequency,
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Figure 10. Pitch attitude step response with various P-D compensation.
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Figure 11. Linear simulation block diagram.

ωnil
, of 1.0, and outer-loop natural frequency, ωnol

, of 0.6 were used. Both the inner and outer-loop damping
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ratios were set to unity. These values were used in Equations 25 and 26 for the calculation of the P-D
compensator gains. The first trace shows an unsatisfactory rise time when using just the B matrix alone.
This model/P-D compensator is shown in Equations 37 and 38. A value of 44.3 (rad/s2)/rad was used for
B. The primary reason for this slow response is the damping effect of the flybar in the rotor system.

δlon =
αpd

B
(37)

αpd = Kp(Θc −Θ) + Kd(qc − q) (38)

To improve this slow tracking performance, the gains Kp and Kd were explicitly calculated. The simple
B-only model as shown in Equation 37 was still used. To allow the explicit values for Kp and Kd to be
used, gain multipliers were computed. Equations 39 and 40 show the calculation of these given the desired
proportional and derivative gains, Kplin

and Kdlin
. Values of 0.136 and 0.002 for Kplin

and Kdlin
respectively

were used. These values were obtained from flight testing of the SPIDER vehicle.

iKp =
Kplin

B

Kp
(39)

iKd =
Kdlin

B

Kd
(40)

αpd = iKpKp(Θc −Θ) + iKdKd(qc − q) (41)
(42)

The result of this modification can be seen in Figure 10. A problem arises when this modification is made
to the P-D compensator. In the formulation of the neural-network adaptation law, the gains in the P-D
compensator are used.1,2 By using these multipliers a difference between the adaptation law and the P-D
compensator is created. This results in the neural-network being unable to cancel the model error correctly.
This result was found during high-speed flight testing. The neural-network was unable to adapt to the
changing vehicle dynamics as a function of flight speed.

The correct modification is to make the dynamic model slightly more complex with the addition of A.
This value allows the designer to effectively modify the ratio of Kp to Kd without effecting the formulation
of the neural-network adaptation law. The new augmented dynamic inverse is can be seen in Equation 43.

δlon =
αpd −Aq

B
(43)

If one substitutes the P-D compensator, Equation 38, for αpd the result is:

δlon =
Kp(Θc −Θ) + Kdqc − q(Kd + A)

B
(44)

It can be seen from Equation 44 that a negative value for A will have the effect of reducing the feedback
effect of Kd. In this simulation, the value qc was set to 0. A value of -2.7 (rad/s2)/(rad/s) was used for
A and 52 (rad/s2)/rad was used for B. These values were obtained from flight testing. The resulting step
response can be seen in Figure 10.

From this simulation, it can be seen that the proper choice of dynamic model is critical. During flight
testing, it was found useful to disable the neural-network and rely solely on the P-D compensator control.
This allowed for the observing of the performance of the baseline dynamic inverting controller.

With this same linear simulation, an initial selection of the inner-loop dynamic model parameters can be
solved for. This method is designed to solve for the two parameters, A and B, using the simplified pitch (or
roll) dynamics from Equation 36. The response of the pitch-rate (or roll rate) is used instead of pitch (or
roll) attitude. The reason for this can be seen in Equation 45.

q̇ = Aq + Bδlon (45)

The original 3rd-order model, with respect to rate, is reduced to first-order. The responses of the pitch
models for both the SPIDER and Maxi-Joker to a step input can be seen in Figures 12 and 13 respectively.
The data listed in Table 1 was used in the creation of the pitch dynamic models. Table 3 lists the estimated
and actual flight parameters for the pitch axis of both the SPIDER and Maxi-Joker. It can be seen in
Table 3 that the estimated rate damping was consistently about 1.6-times larger than the parameter found
from flight testing. The control power from the model closely matches that found from flight testing.
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Figure 12. Reduced order pitch model of SPIDER.
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Figure 13. Reduced order pitch model of Maxi-Joker.
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Vehicle A Estimated A Flight B Estimated B Flight
Maxi-Joker -7.648 -4.5 225.7 207
SPIDER -4.336 -2.7 59.27 52

Table 3. Flight and estimated pitch parameters for both SPIDER and Maxi-Joker.

V. Conclusion

In order to reduce both development risk and time, an adaptive controller was chosen for use on two
vehicles at the U.S. Naval Research Laboratory. The controller implemented was based on an inner and
outer-loop architecture originally presented by Johnson and Kannan.1,2 By using a neural-network, model
errors present in the approximate dynamic inversion are canceled online. This design reduced the dependency
on having an accurate mathematical model of the vehicle during development.

During the implementation of the controller, three key points were addressed: reference frame selection,
rate of controller propagation, and selection of the approximate dynamic model. Two of these three areas
caused some difficulty in successful implementation of the controller. First, the rate of controller propagation
caused issues in the stability of the propagation of the reference model during hedging events. An acceleration
limiter was invented to prevent the pseudo-control hedge from causing a divergence of the reference model.
The choice of neural-network parameters was also found to be dependent on the update rate of the controller.
Next, several iterations of inner-loop approximate dynamic inverse models were investigated. It was found
that the model needed a minimum level of complexity to accurately capture the effect of the rotor system
flybar damping, while not violating the derivation of the neural-network adaptation law.

Once these implementation details were solved, the controller performance on these two research vehicles
has been acceptable. When the achieved performance of this controller/vehicle combination is compared to
similar vehicles implementing basic linear control, such as PID, the usable flight envelope is much larger.
Currently, both research vehicles have flown in excess of 44 miles-per-hour airspeed with only a controller
designed and tuned around the hover flight condition. To date, three SPIDER airframes have been flown with
this controller, and no controller parameter adjustments were required across these platforms. In conclusion,
given the level of achievable performance for the complexity, this particular controller implementation is
quite practical.
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